近年来,新能源汽车的发展速度已经到了令人叹为观止的地步,且不说频繁上市的新能源汽车,让用户从未有如此丰富的选择空间,而新能源相关技术的发展,更是其发展的关键。那么在新能源汽车发展的过程中,有哪些不容忽视的核心技术呢?请看我们带来关于新能源技术的干货。
冷热电三联供CCHP是以天然气为主要燃料带动燃气轮机、微燃机或内燃机发电机等燃气发电设备运行,产生的电力供应用户的电力需求,系统发电后排出的余热通过余热回收利用设备向用户供热、供冷。作为传统热电联产CHP的扩展,冷热电三联供CCHP不仅可以满足发电需求,同时释放的热量将成为副产品被回收利用,作为空间加热,水加热以及空间冷却的热源。该技术常常应用于建筑物的空调设备,而吸收式制冷机产生的电能与废热之比可以通过变化来满足特定的要求。
与独立的供热与电力系统相比,冷热电三联产系统不仅提高了能源效率,节约了能源,也降低了燃料和能源成本,因而更具有经济效益。而CCHP与例如沼气等可再生能源的结合,也进一步促进了能源转型,同时通过二氧化碳减排为日益严重的温室效应做出贡献,潜力不容忽视。
近年来电池技术的研究越来越受到重视,世界各国都在加大对电池技术的投资。目前,电池领域中,不同类别的电池正在不同的应用场景中发挥优势。电池技术的飞速发展也加快了全球能源转型的步伐。
电池技术种类众多,以铝空气电池、铅酸电池、燃料电池、熔盐电池、锂电池这个五大类最为普及,而这5个其中最常见的就是锂离子电池,它的效率可达80%到85%,不需要复杂的安装条件,具有寿命长、输出功率高的特点,但是安全性能稍差,且对电池管理系统的要求比较高,电池系统的成本也较高。而铅酸电池的总效率在70%到75%左右,可以通过控制过充电反应来提高安全性能,无需复杂的电池管理,短期摊销和初始投资相对较低,但是其对通风的要求较高且循环寿命有限,目前主要应用在调频、调压、不间断电源、光伏储能系统和孤岛电网中,未来如果能建立起完整的自动化生产线则应用规模会继续拓展。此外,熔盐电池的总效率在68%到75%左右,这类电池能量密度较高,使用寿命长,约在15到20年,且钠硫资源原料成本低,但是其工作温度很高,在使用过程中可能会带来潜在危险,目前主要应用在调频、移峰、电动汽车、孤岛电网和不间断电源中。
可再生能源发电具有发电间歇性和可控性差的特征,对其大量并网运行带来了很大挑战。电转气技术利用氢气将传统电力系统和天然气系统之间隔阂打破,让电力系统和天然气系统间的能量双向流动成为可能,促进了气—电网络的深度融合,也为解决可再生能源发电的波动性问题提供了新途径。电转气技术是一项未来多能源系统的重要支持技术。
电转气(Power to Gas, PtG)是将电能转化为具有高能量密度燃料气体的技术。电传气技术首先将水电解生成氢气 (PtH2),所产生的氢气可以被直接注入管道用于交通运输或其他工业领域;或者与大气、生物质废气和工业废气中产生的二氧化碳结合,通过甲烷化反应转化成甲烷 (PtCH4),便于后续运输与。如果电解水所使用的电力来自太阳能或风能,电转气技术可以在所有应用领域形成一个可再生能源的综合利用体系。
相变储能是热储能的一种利用相变材料(Phase Change Material, PCM)储热特性, 来储存或者是释放其中的热量,从而达到一定的调节和控制该相变材料周围环境的温度, 从而改变能量使用的时空分布, 提高能源的使用效率。
相变储能利用的是材料在从一种物态到另外一种转换过程中热力学状态(焓)的变化。比如冰在融化为水的过程中要从周围环境吸收大量的热量,而在重新凝固时又要放出大量的热量。这种吸热/放热的过程中,材料温度不变,即在很小的温度变化范围能带来大量能量的转换过程,是相变储能的主要特点。